skip to main content


Search for: All records

Creators/Authors contains: "Ito, Shin-ichi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    As a crucial step in developing a bioenergetics model for Pacific Chub MackerelScomber japonicus(hereafter chub mackerel), parameters related to metabolism, the largest dissipation term in bioenergetics modelling, were estimated. Swimming energetics and metabolic data for nine chub mackerel were collected at 14°C, a low temperature within the typical thermal range of this species, using variable‐speed swim‐tunnel respirometry. These new data were combined with previous speed‐dependent metabolic data at 18 and 24°C and single‐speed (1 fork length per second:FL/s) metabolic data at 15 and 20°C to estimate respiration parameters for model development. Based on the combined data, the optimal swimming speed (the swimming speed with the minimum cost of transport,Uopt) was 42.5 cm/s (1.5–3.0FL/sor 2.1 ± 0.4FL/s) and showed no significant dependence on temperature or fish size. The daily mass‐specific oxygen consumption rate (R, g O2g fish−1 day−1) was expressed as a function of fish mass (W), temperature (T) and swimming speed (U):R = 0.0103W−0.490e(0.0457T)e(0.0235U). Compared to other small pelagic fishes such as Pacific HerringClupea harengus pallasii, Pacific SardineSardinops sagaxand various anchovy species, chub mackerel respiration showed a lower dependence on fish mass, temperature and swimming speed, suggesting a greater swimming ability and lower sensitivity to environmental temperature variation.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)